
CoPlace: Coherent Placement Engine with Layout-aware
Partitioning for 3D ICs

Bangqi Fu
CSE Department, CUHK
bqfu21@cse.cuhk.edu.hk

Wing-Ho Lau
CSE Department, CUHK

whlau22@cse.cuhk.edu.hk

Lixin Liu
CSE Department, CUHK
lxliu@cse.cuhk.edu.hk

Martin D.F. Wong
CSE Department, CUHK
mdfwong@cuhk.edu.hk

Yang Sun
CSE Department, CUHK
ysun22@cse.cuhk.edu.hk

Evangeline F.Y. Young
CSE Department, CUHK

fyyoung@cse.cuhk.edu.hk

Abstract—The emerging technologies of 3D integrated circuits (3DICs)
unveil a new avenue for expanding the design space into the 3D domain
and present the opportunity to overcome the bottleneck of Moore’s
Law for the traditional 2DICs. Among various technologies, the face-
to-face bonding structure provides high integration density and reliable
performance. Most commercial EDA tools, however, do not support
3DIC and cannot give a convincing solution. To exploit the benefits of
stacking multiple tiers vertically, placement algorithms for 3DIC are
imperatively in need. In this paper, we proposed a design flow that
optimizes partitioning and placement quality for 3DICs in a unified way.
Experimental results on the ICCAD2022 contest benchmark show that
our work outperforms the first-place team by 3.35% in quality with less
runtime and terminals used.

Index Terms—Physical design, 3D IC, Global placement, Partitioning

I. INTRODUCTION

3D integration circuit (3DIC) technology has shown exciting
potential for improving circuit quality like power, performance, and
area compared to 2D circuits and is a promising technology to
pursue while the circuit scale rapidly expands. Traditional EDA
tools, however, are developed for 2D circuits and cannot provide
reliable design solutions for 3D circuits, thus bringing problems on
interconnect, thermal, timing issues, etc. for the design of 3DICs.

Various technologies have been proposed in the past decades
to overcome the interconnect issue in 3DIC. The through-silicon
via (TSV) technology adopts TSVs for interconnection between
multiple dies. TSVs are large vias that occupy silicon areas and bring
significant quality overhead. The Monolithic 3D (M3D) technology
fabricates dies sequentially with monolithic inter-tier vias (MIV) and
achieves much higher integration density[1].

The Die-to-Die (D2D) bonded 3DIC stacks two dies vertically
with hybrid bonding terminals and offers high flexibility compared
to the previous two technologies [2]. The hybrid bonding terminals
are small patches on the topmost padding layers of each die and will
not occupy placement resources. By doing so, a large die is split into
2 small dies and stacked vertically in order to have a smaller area and
better timing. The unique advantage of D2D IC is that each of the
2 dies can be fabricated independently with different technologies,
which would result in much higher flexibility in circuit optimization
and cost-effectiveness. This feature means that cell configurations
like size and layout are different on each die, making the design of
D2D 3DICs even more challenging.

To better exploit the benefits of 3DICs, many previous works have
been proposed to explore the co-optimization of netlist partitioning
and cell placement. The work [3] transforms a 2D design into a 3D
design by stacking and folding in order to obtain balanced areas and
an even via density distribution among dies. The work [4] derives

The work described in this paper was partially supported by a grant from the
Research Grants Council of the Hong Kong Special Administrative Region,
China (Project No. CUHK14209320).

Original Die

Top Die (Tech B)

Bot Die (Tech A)

Fig. 1: Illustration of a netlist partitioning.

3D placement from a 2D placement by applying a bin-based FM-
partition to obtain an area-balanced partitioning for two dies. The
paper [5] proposed a design flow using a 2D commercial tool in
which they expand the die scale to place all the standard cells on a
single die and then contract the layout to 3D. The work [6] models
the 3D electrostatic field and performs placement in the 3D space to
optimize wirelength and the z-direction of the 3D placement is then
discretized to obtain the layer assignment solution.

Most of the previous works isolate the partitioning and placement
stages to approximate the final quality of a 3DIC which can lead
to significant quality loss. A good circuit partitioning alone lacks
the layout information and cannot guarantee good placement quality,
while a good placement result may not be well preserved after
partitioning. A placer that is strongly coupled with a partitioner
is imperatively needed. In this paper, we propose a coherent
placement engine that integrates the placement and partitioning stages
seamlessly. Our main contribution in this work can be concluded as
follows:

• We propose a coherent framework that leverages a single place-
ment engine for the placement and partitioning co-optimization.
The framework consists of 3 stages built with a unified place-
ment engine. A compact 2D placement that serves as an initial
solution; a 3D placement on the expanded z-dimension that
pushes cells to each die; a 2.5D multi-layer placement that
places the cell and terminal layers simultaneously.

• We propose a wirelength-driven FM partitioner that effectively
improves the post-partition HPWL with a negligible number of
terminal overhead.

• A row-based legalization and detailed placement for cells and
matching-based legalization for terminals are proposed.

• We achieve 3.35% improvement in terms of the overall score
with competitive runtime and number of terminals compared to
the top 3 teams of the ICCAD 2022 Contest.

II. PRELIMINARIES

A. Overview of 2D Analytical Placement

A typical 2D analytical placer minimizes the wirelength of a given
circuit G = (V,E) with a series of constraints, where V is the set
of cells and E is the set of nets. Let v = {(x1, y1), ..., (xN , yN )} ∈



RN×2 denote the 2D positions of the cells, and N is the number of
cells. The objective of the global placement is formulated as:

min
v

HPWL(v) = min
v

∑
e∈E

HPWLe(v)

s.t. D(x, y) ≤ Dt

(1)

where D(x, y) is the density of a local location in the placement
region R, and and Dt is the given target density constraint.

The cell overlapping constraint would be hard to integrate into
the objective, thus the analytical global placement models relax the
overlapping constraints into the objective function that can be solved
by gradient solvers. We formulate the cell density constraints as a
penalty term and replace the HPWL with a smooth and differentiable
approximation. The unconstrained objective function is defined as:

min
v

∑
e∈E

WLe(v) + λD(v) (2)

where the wirelength WLe(v) =WLe(x)+WLe(y) is the weighted
average (WA) wirelength [7]:

WLe(x) =

∑
i∈e xie

xi/γ∑
i∈e e

xi/γ
−

∑
i∈e xie

−xi/γ∑
i∈e e

−xi/γ
(3a)

and WLe(y) correspondingly. The coefficient γ determines the
precision of the WA wirelength model. And the density weight λ
controls the spreading of cells. A global placement flow usually starts
with a large γ and a small λ and gradually updates them to optimize
the wirelength objective and remove overlaps.

The cell density function follows the ePlace[8], which models the
layout of placement as an electrostatic system and cells as positive
charges and the fields as computed using Poisson’s equation:

▽ · ▽ψ(x, y) = −ρ(x, y),
n̂ · ▽ψ(x, y) = 0, (x, y) ∈ ∂R,∫∫

Rρ(x, y) =
∫∫

Rψ(x, y) = 0,
(4)

where ρ(x, y) is the electron density map, ψ(x, y) is the potential
distribution and ∂R is the boundary of placement region. The
numerical solution of the equation is obtained by discrete cosine
transformation[9].

B. D2D Bonded 3DIC

The emerging technologies of semiconductor fabrication make
it possible and practical to expand circuit integration into the 3D
domain. Among the various 3DIC technologies, the D2D bonded
3DIC provides high integration density and flexibility since the two
dies can be fabricated in parallel and stacked vertically afterward with
hybrid bonding terminals as interconnection. The hybrid bonding
terminals are small pitches placed at the topmost padding layer of
a die and thus will not occupy extra placement resources. The
terminals are required to follow the spacing constraint of padding
layers. We denote the size of a terminal by (wb, hb), and the spacing
required between two terminals by sb.

The two dies can be fabricated with different technologies to
achieve cost reduction. With different technologies, characteristics
like cell height, cell size, and cell pin locations would be different.
In other words, a logical library is mapped to two different definitions
corresponding to the two dies. Suppose we have two dies, C = {0, 1},
let sc = {(wc

1, h
c
1), ..., (w

c
N , h

c
N )} ∈ RN×2, c ∈ C be the cell sizes

on die c, And s0 > s1 without loss of generation.
Our objective is to partition the given circuit G = (V,E) into

two sub-circuits Gc = (V c, Ec) and place cells on each die to
minimize the total cross-die HPWL. For a net that is cut, we need
to create a bonding terminal on the bonding terminal layer as the
interconnection between the cells on the two dies. The bonding
terminals are represented as stand-alone vertices V b. A terminal is

Bottom Die

Top Die

Bonding Layer

Bonding Terminal Cell

Net 2 Net 3Net 1

Fig. 2: An example of placement of the standard cells on 2 dies and
hybrid bonding terminals and the interconnection.

regarded as a pin of the corresponding net. Let v = {v0, v1} =
{(x1, y1), ..., (xN , yN )} ∈ RN×2 denote the 2D projected positions
of the cells on the two dies and vb be the positions of the bonding
terminals, our goal is to minimize the cross-die HPWL defined as
follows:

min
v,vb

∑
c∈C

HPWL(vc ∪ vb) = min
v,vb

∑
c∈C

∑
e∈Ec

HPWLe(v
c ∪ vb)

s.t. Uc ≤ Uc
M ,∀c ∈ C

(5)
where the Uc is the actual utilization of die c and Uc

M is the
corresponding maximum utilization constraint. An example of the
placement of 2 dies and bonding terminals is shown in Fig. 2.

III. PROPOSED FRAMEWORK

The overall flow of our proposed framework is illustrated in
Fig. 3. The framework mainly consists of three stages using a unified
placement engine coherently: (1) compact 2D global placement. (2)
3D placement on the expanded z-dimension. (3) 2.5D multi-layer
placement.

The first stage of compact 2D global placement provides an initial
solution for the later partitioning and 2.5D placement. All the cells are
placed on a single layer in a compact way with double of the target
density, which gives an essential view of the final placement solution.
The placement domain is then expanded into 3D and cells are spread
out in the z-direction. The position on z is discretized into binary
values as the partitioning result. The placement field is then split
into 3 layers corresponding to the partitioned cells and the generated
bonding terminals. This multi-electrostatic-based 2.5D placement
engine optimizes precisely the cross-die HPWL and the density on
each layer simultaneously. Besides, an efficient wirelength-driven
FM partitioning algorithm is proposed to reduce the HPWL overhead
of the initial partitioning solution in the 3D placement stage. At last,
the row-based legalization and detailed placement for cells and the
matching-based legalization for terminals are applied to refine the
solution. The proposed algorithms will be discussed in detail in the
following sections.

A. Compact 2D Global Placement

The objective of compact 2D placement is to offer a good solution
in the projected 2D space, which can then be utilized in the
subsequent 3D placement stage. The primary focus at this stage is to
minimize the wirelength and to optimize the normalized cell density.
What sets this problem apart from previous works is that the cells are



Coherent Global Placement

2D Placement
Compact 2D global placement

Input original netlist

2.5D Placement
2.5D global placement for multiple 
instance layers and cross-die nets

Legalization and Detailed Placement
Matching-based terminal LG

Output partitioning and placement

3D Placement
Layout-aware partitioning using 3D 

global placement engine

Wirelength-driven FM partitioning

Row-based cell LG & DP

Fig. 3: The overall flow of our proposed framework.

defined in multiple technologies so that the total areas for each die
are varying. A good partitioning as depicted in Fig. 4b on the right
has a balanced area on each die and thereby can exploit the benefit
of stacking 2 dies vertically, whereas an unfavorable partitioning on
the left introduces large wirelength overhead for inter- and intro-die
connections. To tackle this issue, we normalize the cell sizes in a
way that ensures equal actual utilization for both dies, so that the
cell areas on the two dies are appropriately aligned.

Let Ac =
∑

vi∈V w
c
i ×hc

i be the total cell areas of die c, and Adie

be the die area. We set the utilization U0 = U1 = A0×A1

(A0+A1)×Adie

according to our assumption of equal utilization. Note that if uti-
lization Uc exceeds the maximum utilization Uc

M for die c, we will
clamp the utilization as Uc = Uc

M and update U1−c accordingly. This
will introduce some small imbalance. We then define a normalization
factor τ = U0×Adie

A0 , denoting the percentage of cell areas that are
placed on die 0 that can achieve the expected utilization.

The normalized cell sizes for this compact 2D placement are
computed as:

s̄ = τ × s0 + (1− τ)× s1 (6)

Then we adopt the 2D non-linear placement given in Equation (2)
to place the normalized cells on a single layer with doubling of the
target density. The placed results serve as an initial solution so that
the cell areas can be well-aligned with the subsequent partitioning
process.

B. Layout Aware Partitioning Using 3D Global Placement

With an initial compact 2D placement solution, we want to
partition the circuit in a way that preserves the placement quality
to the biggest extent possible. Conventional partitioning methods
typically minimize costs such as cutsize for a weighted hypergraph
and lack the physical layout consideration. Lower cutsize does not
necessarily guarantee better HPWL for 3DICs since it may not
facilitate sufficient vertical connections.

An example of the global placement result of three different parti-
tioning methods is shown in Fig. 4b. The cutsize-driven partitioning
in the mid pushes the circuit in a way to have the least number of
vertical connections. The layout shows significant separation between
the cells on the two dies and leads to extra interconnection wirelength
because the cells are more flattened rather than stacked. In contrast,

(a)

(b)

Fig. 4: (a) An example of local density-aware partitioning. (b)
Placement results of 3 partitioning methods. Unbalanced utilization
(Left), Cutsize-driven partitioning (Mid) and local-density-driven
(Right) where the colors represent cells on different dies.

an ideal partitioning on the right establishes a larger number of
vertical connections so that the overall layouts of the 2 dies can
be well-aligned and consequently resulting in shorter wirelength. The
expected partitioning can be achieved by taking the local cell density
into consideration based on the compact 2D placement solution as
illustrated in the two top sub-figures of Fig. 4a.

To achieve a partitioning that maintains the good quality of the
compact 2D solution and ensures balanced local cell density for
each die, we leverage the capabilities of our placement engine by
expanding the spatial domain into 3D and performing placement
along the expanded z-direction.

In our model, each cell occupies a continuous 3D space (x, y, z),
where the x, y are the projected 2D position and z is the extended
direction. The extended 3D Poisson’s equation with spatial density
ρ(x, y, z) is defined as:

▽ · ▽ψ(x, y, z) = −ρ(x, y, z),
n̂ · ▽ψ(x, y, z) = 0, (x, y, z) ∈ ∂R,∫∫∫

Rρ(x, y, z) =
∫∫∫

Rψ(x, y, z) = 0
(7)

The gradient of the spatial density is numerically solved with the
discrete cosine transformation (DCT):

Ex =
∑

j,k,l

aj,k,lwj

w2
j+w2

k
+w2

l
sin(wjx)cos(wky)cos(wlz)

Ey =
∑

j,k,l

aj,k,lwk

w2
j+w2

k
+w2

l
cos(wjx)sin(wky)cos(wlz)

Ez =
∑

j,k,l

aj,k,lwl

w2
j+w2

k
+w2

l
cos(wjx)cos(wky)sin(wlz)

(8)

By applying the 3D electrostatic field as pushing forces, cells spread
out to the whole 3D space evenly. In our flow, the cells are pre-
placed in the 2D space (from the compact 2D placement), and the
3D placer serves as a partitioner, so we set Ex = 0, Ey = 0 to
freeze the cells in the x, y directions and only apply gradients in the
z-direction to spread the cells. The z positions are then discretized
into binary values as the tier assignment [10].

As the standard cells on each die are defined in the same logical
library but with different technologies, the difference in cell sizes
will bring bias between the cell areas of the two tiers. To achieve
area balance correctly, we will initialize all the cells by the top die
technology cell sizes s1 and whenever a cell is moved to the bottom
half, its size will be enlarged to its true size s0 for the bottom die
technology.



Cell1

Cell2

Cell3

Cell4 Terminal

Cell1

Cell2

Cell3

Cell4

Die 0

Die 1

BBox

Cell

Fig. 5: A 2D projected placement of a bad (Left) and a good (Right)
partitioning.

A naive wirelength model of the 3D placement is the sum
of the independent HPWL in the 3 directions, HPWL(v) =
HPWLx(v) + HPWLy(v) + HPWLz(v). Since we freeze the
x, y-direction and optimize only the wirelength of HPWLz(v), the
objective is similar to achieving min-cut partitioning. So it becomes
necessary to relax the wirelength objective and allow some nets to
be cut.

In this scenario, cutting nets with shorter wirelength will be more
favorable. This is because larger nets are more likely to generate
higher HPWL overhead if they are cut. Therefore in our algorithm,
we define a net weight ω according to a net’s size and degree D
so that the nets with the least possible influence on wirelength are
more likely to be cut. Consider a random tier assignment, a net of
degree D will have a probability of 1− 0.5D−1 to be cut. With the
most pessimistic assumption, a cut net will double the 2D projection
HPWL. A step function of a weight coefficient α < 1 is used to
further discourage high-degree nets to be cut with a threshold T . We
thus define a net weight ω(D) = prob(D)× step(D) where:{

prob(D) = (1− 0.5D−1)×HPWLx,y(v)
step(D) = α if D < T ; 1 otherwise

(9)

The variable α is precomputed. The objective of the 3D placement
is then:

min
v

∑
e∈E

sHPWLe(v) + λD(v) (10)

where sHPWL(v) = ω × HPWLz(v). In this way, the 3D
placement result can preserve the good quality of the compact 2D
placement solution while maintaining local cell density balance, and
can serve as a good initial partitioning solution.

C. Multi-electrostatic 2.5D Global Placement

To further optimize the cross-die HPWL and remove overlaps, we
adopt a multi-electrostatic 2.5D placement to refine the placement
solution on each layer. A multi-electrostatic-based method is able to
solve placement problem with fence constraints [11]. We extended
the model to place cells and bonding terminals on multiple layers
simultaneously, which are the bottom die, top die and bonding
terminal layer respectively D = (D0, D1, Db). The objective of
the 2.5D multi-electrostatic placement is to minimize the cross-die
HPWL of the partitioned circuits such that the cells and terminals
on the three layers have minimal overlap. To satisfy the spacing
constraint of the bonding terminals, we instantiate each terminal with
a size of (wb + sb, hb + sb), where wb, hb, sb are the width, height
and spacing respectively. The densities of the three layers are then
relaxed as a penalty term in the objective function:

min
v,vb

∑
c∈C

HPWL(vc ∪ vb) + ⟨λ,D⟩ (11)

where λ = (λ0, λ1, λ2) is a vector of the density terms in each layer
and ⟨·, ·⟩ denotes the inner product. Fillers are inserted into each
layer independently The objective is to optimize the total wirelength
of two reconstructed netlists with bonding terminals, v0 ∪ vb and
v1 ∪ vb while removing the overlaps of instances in each layer.

Box1

Box2

1

2

3

4

Box1

Box2

1

2
Gain

4

Swapped

Box1

Box2
5

1

2

Swapped

Loss

3

4

3

(a) (b) (c)
Fig. 6: An illustration of our proposed bounding box (BBox) updating
scheme in wirelength-driven FM partitioning: (a) current BBox on a
die. (b) updated BBox and gain when swapping a cell to the other
die. (c) updated BBox and loss when swapping a cell from the other
die to this die.

D. Wirelength-driven FM Partitioning

As mentioned in Section III-B, improper partitioning of a net might
double its contribution to the HPWL. An example of a bad and a
good partitioning is shown in Fig. 5. Suppose there are 4 standard
cells in the shown positions and the outline color of the cell denotes
its tier assignment. The partitioning on the left almost doubles the
HPWL compared to the original single-chip HPWL, whereas the right
partitioning significantly reduces the cross-die HPWL. To handle this
issue, we propose an efficient wirelength-driven FM partitioning in
Algorithm 1 after the 3D placement stage to further improve the
wirelength [12]. The input of the algorithm is a partitioned netlist,
obtained by the 3D placement in Section III-B. All the cells are
set to be free at the beginning. Several lists are initialized, where
the GainList is the reduction in HPWL if we move a cell from
one die to the other and CutList is the reduction of the number of
cuts. Every time we move a cell to the opposite die, the gain of its
neighboring cell (connected by the same net) may need to be updated.
Apart from the traditional FM algorithm that targets minimizing the
cut size, we also target minimizing the total HPWL on the two tiers
directly. A naive algorithm for updating the gain runs in a high time
complexity and is very time-consuming.

To speed up the gain updating, we maintain and reuse the net
bounding box information to avoid redundant netlist traversal. In our
proposed algorithm UPDATEGAINHPWL, two boxes are initialized
for each sub-net on the 2 layers. The variable B1 is the outermost
bounding box of the net in each die, and B2 is the second outermost
bounding box being the updated bounding box if we remove the
cells that lie on the original bounding box, as depicted in Fig. 6.
Suppose we try to move celln from die c to 1 − c. If celln lies
on B1[c], it means that celln is one of the outermost cells of this
net on die c. By moving celln to die 1 − c, the second outermost
box B2[c] will become the bounding box. On the other hand, if
celln lies outside B1[1 − c], celln becomes the outermost cell of
this net on die 1− c. The change in HPWL can be easily calculated
by using these bounding boxes information. We pop the cell with
the maximum weighted gain out of the FreeCell list to swap by
POPMAX function according to the Gain,Cut and AreaWeight
in the current status.

Now we introduce the AreaWeight in the POPMAX function.
When swapping cells, the utilization on each die are changing. To
keep a stable utilization as expected and to maintain the maximum
utilization constraint, we propose a utilization-driven area weight η to
adjust the wirelength-driven cell gain dynamically. We first define the
relative utilization ratio r = Area0

Area1 , where Areac =
∑

vi∈V c w
c
i×hc

i

are the cell areas of each die, and r changes according to the tier
assignment. We then assign a cell at die c with an area weight ηc,
formulated as follows,

ηc = exp(
∆Rc

ru − rl
) (12a)

∆Rc(r) =

{
r − rl, if c = 0

ru − r, otherwise
(12b)



Algorithm 1 Wirelength-Driven FM Partitioning

1: FreeCell← cells

2: Initialize GainList, CutList, AreaWeightList, tier, pos
3: while FreeCell ̸= ∅ do
4: cell← PopMax()
5: UpdateGainHPWL(cell)
6: FreeCell← FreeCell \ cell
7: Track(Gain,Cutsize)
8: ApplyBestSolutionTrack()

9: function UPDATEGAINHPWL(cell)
10: tier[cell]← 1− tier[cell] ▷ Swap to the other die
11: for each net : cell ∈ net do
12: box← xl =∞, yl =∞, xh = −∞, yh = −∞
13: B1 ← [box, box] ▷ The out-most bbox for 2 dies
14: B2 ← [box, box] ▷ The second out-most bbox for 2 dies
15: for each i : cells[i] ∈ net do
16: c← tier[i]

17: (x, y)← pos[i]
18: if x > B1[c].xh then B1[c].xh = x

19: else if x ≤ B1[c].xh and x > B2[c].xh then
20: B2[c].xh = x

21: if x < B1[c].xl then B1[c].xl = x

22: else if x ≥ B1[c].xl and x < B2[c].xl then
23: B2[c].xl = x

24: for each i : cells[i] ∈ net do
25: Bs ← B1 ▷ The intermediate bbox
26: c← tier[i]
27: (x, y)← pos[i]

28: if x == B1[c].xh then Bs[c].xh = B2[c].xh

29: if x == B1[c].xl then Bs[c].xl = B2[c].xl

30: if x > B1[1− c].xh then Bs[1− c].xh = x

31: if x < B1[1− c].xl then Bs[1− c].xl = x

32: GainList[i] += B1 −Bs

where rl and ru are the pre-computed lower and upper bound of r,
which are only related to the given utilization constraint and design
technology. Thus, ηc(r) is only determined by the variable r and the
tier assignment c. A normalization factor ϕ is applied to stress the
number of cuts in the objective.

The weighted gain for a cell i at die c is formulated as follows,

WeightGainList[i] = ηc × (GainList[i] + ϕCutList[i]) (13)

which is applied in the POPMAX function and serves as a key
criterion to select cells to swap. In Equation (13), ηc measures the
importance of utilization constraint during the swapping process.
When the value of η0 is close to η1, the POPMAX function will
choose a cell with a large wirelength-driven gain. When more cells
are swapped from die 0 to die 1, the ratio r will decrease, and we
have η0 < η1. In this case, a larger η1 will encourage a swap from
die 1 to die 0 so that the areas are stable, and vice versa.

CoPlace iteratively swaps cells and the best solution is selected
as argmax(Gain × (#Nets − Cutsize)), which can achieve the
biggest HPWL improvement with acceptable cutsize overhead.

E. Legalization and Detailed Placement

We perform row-based legalization for cells [13]. The legalization
consists of Greedy legalization and Abacus legalization. A matching-
based legalization for bonding terminals is proposed. We discretize
the die into uniform tile sites and assign a local search region to
each bonding terminal. A min-cost bipartite matching is performed
between the terminal nodes and the site nodes [14], where the cost
of an edge is the HPWL overhead to put a terminal in a site. After
finding legal positions, detailed placement is applied to further refine

TABLE I: Benchmark statistics

design name #Cell #Nets max #Term U0
M (%) U1

M (%)

case2 2735 2644 2000 70 75
case2 hidden 2735 2644 2000 79 79

case3 44764 44360 36481 78 78
case3 hidden 44764 44360 36100 68 78

case4 220845 220071 183612 66 70
case4 hidden 220845 220071 178929 66 76

the solution quality, which consists of 3 strategies: global swap, local
reordering, and independent set matching [13] .

IV. EXPERIMENTS

We develop our algorithms using C++, and the experiments are
conducted on a Linux machine with a 2.90GHz Intel Xeon CPU.
We test our performance on the ICCAD 2022 contest benchmarks
[2] of 3D Placement with D2D Vertical Connections. The evaluator
provided by the contest organizer is used to validate the legality and
quality of the solution. Eight threads are used for CPU computation.

A. Comparison with the Top-3 Teams

The benchmark consists of 7 cases, in which the toy case is
removed in our experiments. In Table I, we show the statistics of each
case, including the number of cells, the number of nets, the maximum
number of terminals allowed, and the maximum utilization. The cases
encompass different design scales, technologies and terminal sizes,
presenting a diverse view of the problem.

The HPWL, number of terminals, and runtime results are presented
in Table II and the normalized ratio is shown in the last row.
The runtime of top 3 teams are reported from the contest. To
narrow the influence caused by different test machines and make the
comparison fair enough, we normalize our runtime by RT

RTlocal
, where

RT is the reported runtime of the top teams and RTlocal is their
runtime obtained on our local server. Results show that our proposed
framework outperforms the top 3 teams of the ICCAD 2022 contest
with better HPWL and faster runtime. In specific, we achieve 3.35%
improvement in the total wirelength compared with the first place
while also being 35% faster and using 45% fewer terminals. Results
show that our proposed framework performs better on larger cases
possibly because our 3D placement-based partitioner can achieve a
better global view for large-scale designs. The runtime breakdown of
case4 in Fig. 7 shows the percentage of runtime for each component
of our framework.

Note that although the evaluation metric doesn’t focus on the
possible influence on PPA like timing and bandwidth introduced
by an improper number of terminals, our algorithm still provides
the capability to reduce the critical terminals by enlarging the
cutsize factor ϕ in Section III-D and the net weight coefficient α
in Section III-B.

B. Flexibility with Varying Terminal Size

To demonstrate the flexibility of our proposed framework in
handling varying terminal sizes, we show in Fig. 8 the total HPWL of
case4 with different terminal sizes. Our approach outperforms the top
3 teams for all three types of terminals with varying sizes. Smaller
size allows more terminals to be integrated for vertical connections,
and thus will result in shorter wirelength. The result indicates that the
net weight coefficient α in Equation (9) adapts to the terminal sizes,
resulting in using an appropriate number of terminals to minimize
the wirelength.



TABLE II: Experimental results on the ICCAD 2022 contest benchmarks[2]. Runtime is normalized for a fair comparison.

Benchmark
1st Place Team 2nd Place Team 3rd Place Team Ours

HPWL #Terminal RT (s) HPWL #Terminal RT (s) HPWL #Terminal RT (s) HPWL #Terminal RT (s)

case2 2072075 1131 45 2080647 477 14 2097487 163 10 2064852 195 52
case2 hidden 2555461 1083 40 2735158 687 15 2644791 151 9 2530288 321 54

case3 30580336 16820 635 30969011 11257 473 33063568 14788 145 30490760 7597 338
case3 hidden 27650329 16414 412 27756492 8953 482 28372567 11211 133 26998021 8213 305

case4 281315669 84069 2580 274026678 51480 3284 281378079 46468 925 270141472 58708 1783
case4 hidden 301193374 84728 2239 308359159 59896 3283 307399565 58860 983 292195136 65395 1862

Sum 645367244 204245 5951 645927145 132750 7551 654956057 131641 2205 624420529 140429 4395
Ratio 1.034 1.454 1.354 1.034 0.945 1.718 1.049 0.937 0.502 1.000 1.000 1.000

IO

2.5%GP2D
27.6%

GP3D

15.0%

GP2.5D

30.5%

FM3.1%

LG
2.3%

DP

18.9%

Fig. 7: Runtime breakdown of case4.

0.5x 1x 1.5x
Terminal…Size

40000

60000

80000

100000

120000

#T
er
m
in
al
s

#Terminals
Ours
1st
2nd
3rd

0.5x 1x 1.5x
Terminal…Size

2.6

2.7

2.8

2.9

3.0

3.1

3.2

H
PW

L

1e8 HPWL…Curves
Ours
1st
2nd
3rd

Fig. 8: The HPWL and the number of terminals with varying terminal
size.

0 5000 10000 15000 20000
#swaps

2.34

2.36

2.38

2.40

2.42

hp
w
l

1e8 HPWLs

SelectSol
hpwls

0 5000 10000 15000 20000
#swaps

0.300

0.325

0.350

0.375

0.400

0.425

cu
ts
/#
N
et
s

Cuts

SelectSol
cuts

0 5000 10000 15000 20000
#swaps

1.02

1.04

1.06

1.08

r

Relative…Util.…Ratio…r

SelectSol
rl

ru

r

Fig. 9: The history curves of HPWL, Cutsize, and r in a pass of
swapping cells of case4.

C. Effectiveness of Wirelength-driven FM Partitioning

In Fig. 9, we demonstrate the effectiveness of the partitioning
algorithm proposed in Section III-D. The Gain and Cutsize of each
iteration are tracked and the best solution indicated by the vertical
orange dashed line is selected. The solution achieves significant
HPWL reduction with less than 5% cells being swapped and less than
4% more nets being cut. Besides, we also track the relative utilization
ratio r defined in Section III-D. As the curve shown, the fluctuation
of r is small when the number of swaps increases, which indicates
the stableness of utilization. The results further imply our proposed
area weight successfully maintains a stable and valid utilization of
the two dies.

V. CONCLUSION

In this paper, we propose CoPlace, a coherent placement frame-
work that effectively couples placement and partitioning for the 3D
placement with D2D bonding terminals. Compared with the top
teams of ICCAD 2022 contest, our framework exhibits better quality.

REFERENCES

[1] L. Zhu, A. Chaudhuri, S. Banerjee, G. Murali, P. Vanna-Iampikul,
K. Chakrabarty, and S. K. Lim, “Design automation and test solutions
for monolithic 3d ics,” vol. 18, no. 1, nov 2021.

[2] K.-S. Hu, I.-J. Lin, Y.-H. Huang, H.-Y. Chi, Y.-H. Wu, and C.-F. C.
Shen, “2022 iccad cad contest problem b: 3d placement with d2d ver-
tical connections,” in Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design, ser. ICCAD ’22. New York,
NY, USA: Association for Computing Machinery, 2022.

[3] J. Cong, G. Luo, J. Wei, and Y. Zhang, “Thermal-aware 3d ic placement
via transformation,” in 2007 Asia and South Pacific Design Automation
Conference, 2007, pp. 780–785.

[4] S. Panth, K. Samadi, Y. Du, and S. K. Lim, “Placement-driven parti-
tioning for congestion mitigation in monolithic 3d ic designs,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 34, no. 4, pp. 540–553, 2015.

[5] B. W. Ku, K. Chang, and S. K. Lim, “Compact-2d: A physical design
methodology to build two-tier gate-level 3-d ics,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 6, pp. 1151–1164, 2020.

[6] J. Lu, H. Zhuang, I. Kang, P. Chen, and C.-K. Cheng, “Eplace-3d:
Electrostatics based placement for 3d-ics,” in Proceedings of the 2016
on International Symposium on Physical Design, ser. ISPD ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p. 11–18.

[7] M.-K. Hsu, Y.-W. Chang, and V. Balabanov, “Tsv-aware analytical
placement for 3d ic designs,” in Proceedings of the 48th Design Au-
tomation Conference. New York, NY, USA: Association for Computing
Machinery, 2011, p. 664–669.

[8] J. Lu, H. Zhuang, P. Chen, H. Chang, C.-C. Chang, Y.-C. Wong, L. Sha,
D. Huang, Y. Luo, C.-C. Teng et al., “eplace-ms: Electrostatics-based
placement for mixed-size circuits,” IEEE TCAD, vol. 34, no. 5, pp. 685–
698, 2015.

[9] L. Liu, B. Fu, M. D. F. Wong, and E. F. Y. Young, “Xplace: An extremely
fast and extensible global placement framework,” in Proceedings of
the 59th ACM/IEEE Design Automation Conference, ser. DAC ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
1309–1314.

[10] J. Cong and G. Luo, “A multilevel analytical placement for 3d ics,” in
2009 Asia and South Pacific Design Automation Conference, 2009, pp.
361–366.

[11] J. Gu, Z. Jiang, Y. Lin, and D. Z. Pan, “Dreamplace 3.0: Multi-
electrostatics based robust vlsi placement with region constraints,” in
2020 IEEE/ACM International Conference On Computer Aided Design
(ICCAD), 2020, pp. 1–9.

[12] C. Fiduccia and R. Mattheyses, “A linear-time heuristic for improving
network partitions,” in 19th Design Automation Conference, 1982, pp.
175–181.

[13] Y. Lin, W. Li, J. Gu, H. Ren, B. Khailany, and D. Z. Pan, “Abcdplace:
Accelerated batch-based concurrent detailed placement on multithreaded
cpus and gpus,” IEEE TCAD, vol. 39, no. 12, pp. 5083–5096, 2020.

[14] B. Dezs, A. Jüttner, and P. Kovács, “Lemon - an open source c++ graph
template library,” Electron. Notes Theor. Comput. Sci., vol. 264, no. 5,
p. 23–45, jul 2011.


